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Orthographic analysis of geological structures---ll. Practical applications 
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Abstraet--The deformation suffered by an object is directly related to the angle of inclination required to 
interpret its outline as an oblique view of an undeformed object. This relationship is the basis of orthographic 
strain analysis, the continuum mechanical theory of which was discussed in Part I. Part II comprises step-by-step 
instructions for determining strain from a wide variety of markers, for restoring the three-dimensional strain 
configuration from two-dimensional data and for incorporating strain data in structural sections. 

INTRODUCTION 

SINCE the pioneering work of Cloos (1947) structural 
geologists have been aware of the important role that 
strain studies can play in a regional tectonic synthesis. 
However, while deformation theory has received much 
attention (Flinn 1962, Ramsay 1967, Means 1976), prac- 
tical applications in the scale of Cloos (1971) are rare. A 
great deal of time and energy has been expended on 
discussions, or disputes, about theory. In contrast, few 
structural geologists regularly incorporate strain data in 
their structural sections in the style of Hossack (1978) 
and even fewer deduce from three oriented sectional 
ellipses the principal stretch ratios and axial orientations 
of the deformation ellipsoid. Yet this latter is a necessary 
first step in rendering strain data relevant to tectonics. 
An isolated strain reading is as sterile as a radiometric 
date from a loose boulder! Stripped of structural setting 
and field relations, knowledge that the stretch ratio Rs = 
2.5 prompts the question "so what"? What matter most 
are (i) the strain trajectories, which may reveal whether 
a tectonic regime is purely compressional, or a complex 
wrench type, for example, and (ii) outcrop or map-scale 
strain-intensity variations, which may reveal a lot about 
deformation mechanisms and the temporal evolution of 
structures. 

Part I of this paper (De Paor 1983) dealt with the 
theory of orthographic analysis of geological structures. 
Here I will tackle the problem of using strain analysis in 
practice. In the following practical applications, I bear in 
mind the ultimate goals of specifying the three-dimen- 
sional strain rate and incorporating homogeneous strain 
data in heterogeneously deformed structural sections. 
The techniques described employ simple constructions 
on the orthonet and can often be used on location in the 
field. 

The orthographic net, or orthonet (De Paor 1983, 
fig. 1), is a projection of the meridians and parallels of a 
unit sphere onto a plane such that all projection lines are 
parallel to each other and perpendicular to the plane 
(Fig. 1). A point with coordinates (/, m, n) on the sphere 
becomes (l, m) on the projection. A plunge of ~b is 

represented by a point Cos ~b from the centre pin and a 
plane of dip ~ is represented by an elliptical great circle 
of unit long axis and short axis Cos 3, one side of the long 
axis representing upper hemisphere projection, the 
other lower. Fundamental to the techniques which fol- 
low is the ability to view a great circle in two ways: as a 
spatial view of a true circle inclined at an angle ~ and as a 
normal view of an ellipse of axial ratio 1/Cos ~, lying in 
the plane of the diagram. 

Traditionally, orientation nets in structural geology 
represent directions in a geographical reference frame 
such as north-east-down. To understand the ortho- 
graphic analysis of geological structures, one must be 
prepared to abandon these conventions. The orthonet 
conserves vector operations of addition and factoriz- 
ation and is used to represent magnitudes and orien- 
tations. Furthermore, the reference frame will often be 
chosen to coincide with structural features, regardless of 
their geographic orientations. Reference frames may be 
classified according to structural setting, as follows: 

(i) Compaction related 

For this type of deformation, the principal directions 
are vertical and horizontal and there is no active rotation 

Fig. 1. Orthographic projection maps the point (I, m, n) on the unit 
sphere into the point (l, m) on the projection plane. All lines of 
projection are parallel to each other and perpendicular to the projec- 

tion plane. 
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or horizontal extension. Only one variable remains; it 
may be expressed as a vertical stretch S, a longitudinal 
strain e = S - 1 or as a volume change AV = e. Because 
only one variable is sought, little evidence is required 
and a wide variety of strain markers is possible. 

(ii) Cleavage related 

(i) Angular strain markers. They record the change in 
an angle of known initial value. Examples include many 
fossils where the initial angular relations are well con- 
strained by pristine individuals, bedforms such as cross 
strata where initial angular relations are less precise, and 
planes such as lithologicai contacts that are traced in the 
field from undeformed wall rock into deformed zones. 

In many cases, cleavage may be assumed to lie close to 
a principal plane of the strain ellipsoid (strictly speaking, 
this is the left stretch ellipsoid, the irrotational com- 
ponent of deformation in its final orientation but one 
may use the casual term 'strain ellipsoid' when such strict 
specification is not critical). Often an associated mineral 
lineation locates the principal directions in the plane of 
cleavage. Because the axis of a sectional ellipse does not 
have to lie in a principal plane of its parent ellipsoid, it is 
not valid to align a section's maximal stretch direction 
with the trace of cleavage unless the section plane con- 
tains the pole to cleavage (see Sanderson 1974). It is 
common practice to cut one section perpendicular and a 
second parallel to the mineral elongation in the cleavage 
plane (otherwise a third section is required to fully 
determine the three dimensional strain state. These 
sections can be, but need not be, mutually perpendicu- 
lar). Two variables are sought, the principal stretch 
ratios Rxy and Ry z (plus a third, the pitch of the maximal 
stretch in the absence of a lineation); therefore the range 
of sufficient strain data sets is more limited. Rotational 
contributions to deformation cannot be detected. 

(iii) Shear-zone related 

Complexities increase if one chooses the pole to a 
planar shear-zone as one reference axis, the other two 
being either oriented arbitrarily or parallel and perpen- 
dicular to the displacement direction. Correspondingly, 
the rewards of such analyses are greater, since one may 
determine both the stretch and rotational components of 
deformation. Given sufficient data, useful information 
may be extracted even from zones of superposed pure 
and simple shear in a predeformed host. 

(iv) Arbitrarily oriented 

For arbitrary geographical reference frames the vari- 
ables are most numerous and the data requirements 
correspondingly large. It is generally impossible to infer 
the rotational component  of deformation,  even when 
palaeo-plumblines or palaeo-spiritlevels are available 
(for example, the dip of beds that were initially horizon- 
tal is of little value, since the material aligned along the 
final dip direction may have changed trend). Five vari- 
ables must be specified, namely the principal stretch 
ratios Rxy , Ry z and three Euler  angles of the left principal 
stretch directions. 

In each of these settings possible strain markers may 
be classified as follows: 

(ii) Longitudinal strain markers. They record changes 
in lengths of lines. Examples include belemnites, tour- 
malines and rutiles, which respond to applied stress in a 
brittle fashion, developing locally heterogeneous strain 
fields, but which are themselves of insignificant volume 
and thus serve to gauge the longitudinal strain that the 
host would have suffered in their absence. 

(iii) Fabric elements. These are semi-quantitative indi- 
cators of incremental or cumulative strain. Examples 
include fibres, stylolites and crystallographic axes. They 
are not amenable to orthographic analysis but may be 
combined with quantitative strain markers to great 
effect. 

(iv) Deformed object distributions. Here  the mag- 
nitudes of individual lengths or angles are not known but 
statistical distributions are modelled as either initially 
random, uniform, anticlustered or symmetrical about a 
known direction. The effects of deformation upon distri- 
bution statistics permit strain computations. Fry (1979) 
used anti-clustered point distributions and De Paor 
(1979a, 1981a, b, c) introduced the orthographic strain 
analysis of line distributions. Therefore  this class of 
strain markers are not further discussed here. 

(v) Rational markers. These are sufficient alone to 
determine strain ratios. Examples include angular strain 
rosettes such as Pentacrinus ossicles and many fossils 
with landmarks of known initial relative orientation and 
separation. 

(vi) Whole deformation markers. These are sufficient 
alone to determine both the rotational and stretch com- 
ponents of deformation. A simple example is the trace of 
cleavage in a zone of simple shear cutting undeformed 
host-rock. A particularly attractive marker  was recently 
discovered by Ford & Ferguson (1985). It consists of a 
twinned arsenopyrite crystal of initial hexagonal sym- 
metry, with elongate prisms radiating at initial 60 ° inter- 
vals. Each arm of the deformed crystals suffered boudin- 
age as well as angular strain, and fibrous growths be- 
tween boudins constrain the possible incremental ro- 
tations. Such whole-deformation markers are devoutly 
to be sought! 

The six marker  types defined above could be analyzed 
in each of the previously enumerated reference frames. 
However ,  to avoid duplication, such comprehensive 
coverage is curtailed. To begin with an easily visualized 
example, consider the coin superimposed on an orthonet  
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ANGULAR STRAIN MARKERS 

I begin with the case of compaction (Exercises 1-3) 
because the constructions are simplest when there is no 
horizontal extension. Having advanced to more compli- 
cated cases, the interested reader may return to the 
examples used for compaction and very simply modify 
them to render them more generally applicable. 

0 H 

V 
Fig. 2. Image of a coin super imposed on an or thonet  (see Daubr6e  
1879, fig. 156). The h u m a n  eye cannot  tell whether  the coin is 

deformed or merely inclined to the line of sight. 

Fig. 3. Orthographic analysis of compacted cross stratification. The 
radius of the net is drawn at 16 ° to the horizontal (H). V represented 
the vertical. The small circle is drawn at 34 ° from H, this being the 
assumed initial foreset dip, The great circle represents  the strain 

ellipse. 

in Fig. 2. Familiarity with circular coins leads the eye to 
interpret this as an undeformed object oriented at an 
angle of 45 ° to the paper. In fact the coin was deformed 
by Daubr6e (1879, fig. 156); it is truly elliptical, with an 
axial ratio of 1.4, a figure close to the secant of 45 °. 

It is not necessary for the field geologist to be familiar 
with a host of mathematical formulae for different kinds 
of strain marker.  All rational markers obey the following 
simple rule: The axial ratio of the deformation ellipse is 
the secant of  the angle through which one must tilt one's 
line of sight in order to make the object appear unde- 
formed, and the long axis lies in the direction towards 
which one must tilt. (A secant is used to describe the 
forward deformation because the foreshortening, or 
undeforming, effect of an oblique view obeys a cosine 
law; the long axis of the forward deformation lies in the 
direction of tilt because that direction is most foreshor- 
tened, i.e. most effectively undeformed,  in the oblique 
view. One is assumed to view the object orthographi- 
cally, as if through a telephoto lens.) Thus the problem 
of determining the stretch ratio R s can be solved using 
the equation 

R s = Sec ~, (1) 

if one knows the 'view angle' & 6 may be estimated by 
eye in the field but errors are likely to be large. A more 
satisfactory approach is to use the orthonet  to determine 
the inclination of the plane in which the object could be 
thought to lie undeformed. Angular and longitudinal 
strain markers may also have their initial dimensions 
restored by oblique viewing, but given only one such 
marker  there are many possible directions of tilting, 
each with its associated angle 6. 

A series of exercises in orthographic strain analysis 
follows. 

Exercise 1: To determine the amount of compaction 
suffered by cross strata (Fig. 3) 

Given the post-compactional dip of cross strata in a 
horizontal bed, one may determine the amount of verti- 
cal shortening assuming an acceptable initial foreset dip. 
Borradaile (1973) cited 24-44 ° as the range in unde- 
formed sub-aerial deposits. For a post-compaction dip 
of 16 ° , proceed as follows. 

(i) Position the net with its axis horizontal and label 
the reference frame as in Fig. 3. Plot the foreset strike at 
the centre pin and, on an overlay, trace a radial line at 
16 ° to the horizontal. This is the foreset trace. 

(ii) Select an acceptable initial foreset dip from the 
above range, say 34 ° . Counting out from the axis, note 
the 34 ° small circle's point of intersection with the forset 
trace. The great circle which passes through this inter- 
section point is the required compaction ellipse. 

(iii) Modify the assumed initial foreset dip, repeat the 
analysis and note the effect upon the calculated compac- 
tion. 

This exercise clearly illustrates the need to switch 
from a conventional view of the net, in which two great 
circles and a small circle are seen to intersect at a point, 
to a two-dimensional view in which the radius represents 
the foreset dip-line, the vertical line represents a dis- 
placement path and the ellipse represents the compacted 
equivalent of the primitive circle. 

Exercise 2: To determine the amount of compaction 
suffered by a floral stem 

Consider a floral stem fragment furrowed along its 
length and jointed initially at right angles to the furrows 
(Fig. 4a). 
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(b) 

(a) 

V H 

H 

Exercise 3: To determine the amount o f  compaction 
suffered by an unoriented ammonite 

Sanderson (1976) described a case where compaction 
can be evaluated from a deformed ammonite. The fos- 
sil's spiral section is analysed using the method of Tan 
(1973). This gives an elliptical section of the compaction 
ellipsoid; unfortunately, the section's field orientation is 
unknown. The geometry of compaction implies that the 
ellipse's long axis was horizontal and did not suffer any 
change in length. 

• V 

Ft o 

Fig. 4. Orthographic construction for a deformed floral stem shown in 
(a). The reference frame in (b) is conventional (horizon represented by 
the perimeter);  in (c) the perimeter contains vertical and horizontal 
lines, V and H. l a n d  j are the initial furrow and joint directions (they 
subtend an angle of 90 ° when viewed perpendicular to the fossil plane 
as in ( a ) ; f '  and j '  are the deformed equivalents. 8 and c5' are the initial 

and final dips of the fossil plane. See text. 

Fig. 5. Strain analysis using a compacted ammonite. 20 ° is the angular 
shear of the fossil's central axis; 0.7 is the stretch of its short axis. The 

overlay is rotated until a 90 ° pitch is subtended between them. 

(i) Plot that axis at the centre pin of Fig. 5. 
(ii) Let the short axis stretch be 0.7 and the deflection 

of the cylinder axis from orthogonality be 20 °. Draw any 
radial line of 0.7 units length (either side of the pin) to 
represent the ellipse's short axis and draw a second 
radial line of arbitrary length, deflected 20 ° from perpen- 
dicularity to the first, representing the deformed cylinder 
axis. 

(iii) Rotate the tracing paper until a horizontal great 
circle passes through the tip of the short axis and simul- 
taneously subtends a pitch angle of 90 ° between short 
axis and cylinder axis. This great circle is the compaction 
ellipse. 

(i) Using the net in a conventional way (Fig. 4b), trace 
the plane of the fossil and on it mark points f '  and j '  
pitching parallel to the deformed furrows and joints. 

(ii) Join f '  and j' to the centre. These radial great 
circles are the trajectories of the furrow and joint orien- 
tations during compaction. 

(iii) Find the steeper dipping great circle which inter- 
sects the trajectories in points f and j pitching 90 ° apart. 
This great circle represents the undeformed fossil plane. 
In it the single geometric criterion of initial furrow-joint 
perpendicularity is met. 

(iv) Measure the initial and final fossil plane dips, 8 
and 6', and use Sorby's formula, 

Tan 8 = Rs * Tan 8' (2) 

to determine the compaction ratio Rs. Depending on the 
fossil orientation, the reference frame of Fig. 4(c) may 
be preferred. 

Exercise 4: Pure shear of  bilaterally symmetrical fossils 

Determining the two dimensional deformation of 
trilobites, brachiopods and other bilaterally symmetrical 
forms is a simple matter if the fossils lie in bedding, and 
cleavage is developed perpendicular to the plane of 
bedding. 

(i) Make tickmarks on an overlay to represent the 
trace of cleavage and rotate the axis of the net into 
alignment with the tickmarks. Trace the deformed lines 
of fossil symmetry in the correct relative directions 
(Fig. 6a). 

(ii) Inspect the great circles of the net until one is 
found to be divided into four 90 ° quadrants by the 
symmetry lines (be sure to measure angles as pitches, 
along the great circle). The chosen great circle has an 
axial ratio (secant of dip) equal to the stretch ratio Rs. 

In the absence of a cleavage trace, one fossil does not 
suffice, for a different ratio R~ can be calculated for each 



Orthographic analysis---II. Practical applications 91 

I 

(a) 

Exercise 5: Simple shear of bilaterally symmetric fossils 

There is little point in dealing with simple shear in two 
dimensions. Trilobites are unlikely to be found lined up 
perpendicular to the boundaries of shear zones! I there- 
fore proceed directly to the three-dimensional situation. 

(i) Let A, B, C be reference axes chosen so that C is the 
pole to a shear zone, B is the zone's monoclinic sym- 
metry axis and A is the displacement direction (Fig. 7). 
Orientate the net axis parallel to B and trace the fossil's 
symmetry lines S'~ and S~. 

C 

A So B 

Fig. 7. Three-dimensional simple shear of a bilaterally symmetric 
fossil. C, pole to shear zone; B, shear axis; A, tectonic transport 
direction. $1, S[, $2, S~, fossil's initial and deformed lines of symmetry. 
So, intersection of fossil plane and shear plane. ~b, 4~', plunges of lines 
of intersection of A C plane and fossil plane before and after strain. See 

text. 

Fig. 6. (a) Orthographic construction for a deformed brachiopod, h ' ,  
rn' are the deformed hinge and median directions. (b) Construction of 
loci of poles to great circles representing all possible strain ellipses 
when the principal directions are not independently determined. 
When two homogeneously deformed specimens are analyzed, their 
loci intersect at a single point. Similar construction may be made for 

any bilaterally symmetric fossils. 

possible principal direction ~b S. As a simple way of 
representing this (Rs, ~b~) locus use the pole to each great 
circle (plotted on either hemisphere, Fig. 6b). When a 
fossil symmetry line is chosen as the principal direction, 
the locus touches the perimeter as infinite unstraining is 
then required to restore perpendicularity. If a direction 
in the obtuse angle between symmetry lines is chosen, no 
real solution is possible, because it is impossible to 
enlarge an initial right-angle if it contains the maximum 
principal stretch direction. If two or more specimens are 
available, their (Rs, ~bs) loci may be superimposed as in 
Fig. 6(b), yielding a unique solution. 

Three-dimensional analysis is more complicated 
because the particle paths are complex space curves, but 
pure flattening, plane strain and pure constriction are 
tractable. The construction for flattening is identical to 
Fig. 4 except that the plane of no distortion (cleavage) is 
a plane of dilation and is not necessarily horizontal. For 
constriction, the movement  paths are in the reversed 
sense. The case of plane strain leads to exceedingly 
complicated constructions and is best tackled numeri- 
cally (De Paor, in preparation). 

(ii) Since all particle paths for simple shear are parallel 
to the projection lines of Fig. 7, the net may be thought 
of as a simultaneous projection of the initial unit sphere 
and each cumulative strain ellipsoid. All displacement 
vectors are perpendicular to the plane of the figure and 
all line orientations converge upon A along radial great 
circles. Therefore the next step is to trace two lines from 
A through the points representing the attitudes of the 
symmetry lines, S~ and S~. The initial attitudes of the two 
lines must lie on these radii. The final constraint upon 
initial fossil geometry is now enforced. 

(iii) Trace the fossil plane through S] and S~ and note 
its intersection point So on the slip plane AB. The line So 
suffers no stretch or rotation during deformation, so the 
initial fossil plane must also contain So. 

(iv) By rotating the net under the tracing paper, 
inspect all the great circles that pass through So until one 
is found to intersect the radii through S~ and S~ in a pitch 
angle of 90 °. This, if it is unique, is the undeformed fossil 
plane. 

(v) Note the plunges ~b and ~b' of the lines where the 
initial and final fossil planes pass through the AC plane. 
Substituting these angles in Fisher's formula, 

Cot ~b' = 3' + Cot ~b (3) 

yields the shear strain y. 
Note the conditional phrase in step (iv) above. There 

may be cases where two great circles satisfy the criteria 
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(a) (b) (c) (d) 

Fig. 8. Illustration of potential  ambiguity in the determinat ion of shear strain using only one fossil. Labels are as in Fig. 7, 
but for simplicity, the fossil is drawn in the AC plane. (a) Undeformed specimen. (b) First increment  of deformation.  (c) 
Second increment of deformation restores symmetry. (d) Third increment destroys symmetry,  which may be restored by 

returning either to (a) or to (c). 

in this case. To understand the source of this ambiguity, 
consider the hypothetical two-dimensional case in 
Fig. 8. Begin with a fossil lying in the A C  plane and 
apply three pulses of simple shear deformation. After 
the first (Fig. 8b), the fossil's symmetry is destroyed and 
there is only one way of restoring it. After the second 
strain increment (Fig. 8c) the fossil's symmetry returns. 
The initial and final symmetry lines now represent the 
right stretch and left stretch axes of the simple shear 
deformation. After the third strain increment the fossil's 
symmetry is again destroyed. Here is where the 
ambiguity arises, for it is clearly possible to restore 
symmetry by returning to the stage in Fig. 8(a) or 8(c). 
These stages both satisfy the symmetry requirements but 
differ in aspect ratio of the restored fossil. An identical 
argument applies to all three-dimensional sections. A 
second differently oriented specimen will remove this 
ambiguity as only one value of y can be a simultaneous 
solution for the two specimens. 

Having uniquely determined the amount of simple 
shear, the stretches along the symmetry lines are ob- 
tained from the ratios of lengths AS~/AS 1 and AS~/AS2. 

Often it will be possible to define the boundaries of a 
shear zone but not the displacement direction A. In that 
event a locus of (% A) parameters may be constructed by 
repeating the above exercise for all possible A directions. 
Simultaneous solution of such loci for two or more 
specimens may yield a unique (y, A) pair. 

Exercise 6: Angular strain rosettes 

The angle between the initial symmetry lines in all of 
the cases discussed above was 90 °. However, a wide 
variety of fossil strain markers contain features with 
some other initial angular relationship. In general, two 
or more specimens are required for an unambiguous 
solution. Fossils which permit identification of several 
angles constitute angular strain rosettes and they often 
suffice to define both the stretch ratio and principal 
directions. 

Figure 9 shows how to tackle a deformed Pentacrinus 
ossicle, leaf and graptolite (see also Wright & Platt 1982, 
Ramsay & Huber 1984). In each case inspect the great 
circles of the net until one is found on which the pitch 
angles between the deformed fossil features are numeri- 

(c 

\ 
(a) 

Fig. 9. Non-orthogonal  angular strain markers.  (a) Pentacrinus ossicle. 
(b) Leaf. (c) Graptoli te.  See text. 

cally equal to the initial angles as seen in pristine speci- 
mens. The net's axis is either oriented in an indepen- 
dently determined principal direction or on a trial-and- 
error basis. 

Exercise 7: Folded cross strata 

Cross strata are a special type of angular strain 
marker. They are very important because of their fre- 
quent occurrence in the rock record but are problemati- 
cal because their initial geometry is poorly constrained. 
The construction in Fig. 10 shows how the initial dip of 
cross strata may be determined, and the amount of strain 
calculated under admittedly restricted conditions. 

The necessary field situation is shown in Fig. 10(a). 
Cross strata are exposed on both limbs of a symmetrical 
fold. Everything other than the foresets is symmetrical 
about the fold's axial plane. Bedding thickness is essen- 
tially constant and the fan angle of cleavage is mirrored 
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circle's axial ratio is the common axial ratio of the strain 
ellipses from the two limbs (each is presumed to be 
orientated parallel to the respective cleavage trace in the 
field). 

It should be noted that the foreset trace need not be a 
true dip line, as long as its apparent dip value was 
constant across the section before strain. 

LONGITUDINAL STRAIN MARKERS 

(b) ~ ~ ~ T -  ~ -  

/ T I  \ "i',, 
,' / f \JJ' t X 

'X I / 

Fig. 10. (a) Deformed cross strata exposed on the limb of a fold which 
is in every other respect symmetrical about its axial plane. (b) Orthog- 
raphic construction using the data in (a). CI, cleavage trace; B', angle 
between cleavage and deformed bedding trace; t~, initial foreset angle; 

~i., ~k, deformed foresets form left and fight limbs. See text. 

Deformed belemnites have long been used as longi- 
tudinal strain markers (e.g. Daubr6e 1879) and recently 
Thakur  (1972), Mitra (1976) and Ford & Ferguson 
(1985) have used tourmaline, rutile and arsenopyrite 
crystals in similar fashion. Each individual marker  dif- 
fers markedly from its host in ductility, but the total 
volume of markers is assumed to have an insignificant 
effect upon bulk strain. The problem is to discover what 
strain the host would have suffered in the absence of the 
rigid inclusions. 

Exercise 8." Pure shear strain o f  belemnites or crystals 

Given a population of markers subject to the same 
bulk homogeneous strain, we may estimate the stretches 
of individual lines using the method of Ferguson (1981), 
which will not be repeated here. To combine two such 
stretches and an independent  estimate of the principal 
directions, proceed as follows. 

(i) Trace the cleavage or other  principal direction 
indicator on an overlay and align it with the net's axis 
(Fig. 11). 

in the axial plane. For a successful strain analysis one 
need not assume an initial foreset dip angle. It suffices 
that the angle was initially constant along a single bed 
and that the two limbs suffered the same intensity of 
strain. 

An orthographic solution is illustrated in Fig. 10(b). 
(i) Make a tickmark to represent the cleavage trace. 

All data from the left limb of the fold are plotted on the 
left side of the net and all data from the right side of the 
fold are plotted on the right side of the net; therefore each 
cleavage trace in turn may be aligned with the tickmark. 

(ii) Relative to the cleavage trace, mark the bedding 
and foreset traces for each limb on the overlay by 
counting degrees along the perimeter.  

(iii) Draw radii of the net to represent the bedding and 
foreset planes. The cleavage-bedding angles, B and B ' ,  
are equal but opposite because the fold is symmetrical. 
aL and a~ are set off in the same direction as recorded in 
the field. 

(iv) By rotating the net under the overlay, align the net 
axis with cleavage trace and inspect the great circles until 
one is found on which the two bedding-foreset pitch 
angles are equal (t~ in Fig. 10b). The common value of 
this angle is the initial foreset apparent  dip and the great 

t 

/ 
.i 

Fig. 11. Orthographic construction for stretched belemnites. S], S;, 
stretches determined from two individuals oriented in the deformed 
state; C,, C2, points where a great circle intersects belemnites in a 

chord CrC2 which parallels their join SI-S'. See text. 
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(ii) Draw vectors S~ and S~ radiating out from the 
centre, parallel to each marker and equal in length to the 
marker's stretch (the net's radius is taken as unity). 

(iii) Join S'I and S~ and inspect the great circles of the 
net until one is found to intersect the vectors in a chord 
CI-C2 which parallels SI-S~. This great circle has the 
shape but not the size of the strain ellipse. 

(iv) Finally calculate the scaling factor SI/C1 required 
to convert the stretch ratio given by the chosen great 
circle into absolute principal stretches. 

As before, a minimum stretch ratio and locus of 
possible intensities and orientations may be plotted in 
the absence of a cleavage trace and the loci for three 
specimens taken in pairs may be superimposed. Note 
that no assumption about marker orientation is necess- 
ary (this is fortunate since belemnites are not constrained 
to die at right angles to one another). An advantage of 
longitudinal over angular strain markers is that absolute 
stretches may be recorded. However, two disadvantages 
should be borne in mind. First, rigid markers will record 
extension by boudinage only after they enter the field of 
extension and fibre loading has accumulated to breaking 
point. Thus they may not contain a complete record of 
strain. Second, while some pressure-solution shortening 
may occur in certain rocks, most markers will rotate 
rigidly while in the field of shortening. Thus the final 
locus of initially random markers will not lie on a true 
ellipse but will outline a partial ellipse and partial circle 
resembling a silhouette of Saturn (N. Fry, pers. comm.). 

(ii) Use a stereovector (De Paor 1979) to represent the 
stretch and orientation of the marker. To do this, plot its 
orientation as a plunge and trend in the conventional 
way; let this orientation point be a distance s from the 
origin. Plot a second point along the same radius of the 
net at distance Ss from the centre pin, where Ss is the 
marker stretch. 

(iii) Draw two great circles through the points s and Ss, 
meeting in B and note the dihedral angles B' and 6 they 
make with the AB plane. 

(iv) Insert the dihedral angles 8' and B in Fisher's 
formula (eqn. 2) to yield the shear strain 3'. 

In theory the solution is again ambiguous for the plane 
containing B and the initial marker in Fig. 12 could have 
been drawn on either the front or back hemisphere. 
However, in practice, it is not possible for a nearly rigid 
object to behave homogeneously during its passage 
through the field of shortening. If it had originated on 
the back hemisphere it would have rotated rigidly 
towards the BC plane before stretching. Therefore any 
markers whose stereovectors touch the perimeter of the 
net should be interpreted as minimum strain markers 
which may not have recorded an early history of passage 
through the shortening field, but any marker whose 
stereovector falls short of the perimeter may be assumed 
to have resided in the field of extension from the com- 
mencement of strain. 

Exercise 10: Cleavage as a strain marker 

Exercise 9: Simple shear of belemnites or crystals 

A single boudinaged marker in a simple-shear zone 
may suffice to define the amount of shear strain y. The 
necessary construction is illustrated in Fig. 12. 

(i) As for other simple-shear constructions, align the 
net with its axis horizontal and let it represent the 
direction of the shear zone's monoclinic symmetry axis 
B. Thus the displacement direction A coincides with the 
centre pin. 

C 

Ss 

B 

Fig. 12. Construction for a single belemnite subject to simple shear. 
The fossil is represented by a stereovector, Ss, magnitude point; s, 
orientation point; 8, initial plane of B axis and fossil; B', equivalent 

final plane. See text. 

It is common to use cleavage as an indication of one 
principal plane of the left stretch component of deforma- 
tion. However if cleavage is developed in a shear zone, 
its orientation can be used to estimate strain intensity. If 
an independent strain marker such as a deflected dyke is 
present then volume change may be detected. 

First consider a zone of simple shear cutting through 
an undeformed host. Figure 13(a) illustrates the 
relationship between amount of shear strain 3' and orien- 
tation of cleavage V. The zone boundary is a direction of 
no longitudinal strain (i.e. it lies in a circular section in 
three dimensions). The second line of no longitudinal 
strain must subtend, at the C axis, an angle to whose 
tangent is ½y. This is necessary in order that a shear strain 
of - y  should return the line to an initial attitude - to  
while restoring its initial length. Cleavage must bisect 
the circular sections, therefore 

3' = 2 * Tan (90 ° - 2V), (4) 

(see Treagus 1981). 
Now consider Fig. 13(b), in which the AC-plane trace 

of a dyke is shown at 130 ° to the zone boundary outside 
the shear zone and 80 ° inside. Cleavage is absent in the 
host rock and is oriented at V -- 20 ° in the shear zone. To 
factorize the zone strain into volume loss and simple 
shear components, 

(i) Plot axes A and C and let B coincide with the centre 
pin (Fig. 13c). 
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Cd) 8 --A 
Fig. 13. Strain factorization given a dyke which traverses a shear zone in undeformed host rock. V marks the cleavage 
direction in the zone. ~'mi,, ~kmax are the range of possible angular shears, depending on strain path. A is the percentage 
compaction. (a) Explanation of eqn. (4). (b) Trace of dyke at 130 ° to the zone externally and 80 ° internally. (c) Orthographic 
construction; net axis is aligned with cleavage trace. (d) Range of possible angular shear values is defined by the rectangle 

shown. See text for details. 
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(ii) Align the net axis with cleavage trace, at 20 ° to A, 
and draw a line parallel to the deformed dyke direction 
at 80 ° to A. 

(iii) Inspect the great circles of the net until one is 
found to subtend an angle of 130 ° between A and the 
deformed dyke line. 

(iv) Note the ratio of the great circle's height parallel 
to C to its radius parallel to A (Fig. 13d) and call this ratio 
I + A .  

(v) Restore the initial height of the shear zone by 
extending the deformed height a distance --A. Now the 
angular shear $ may be read from Fig. 13(d). Its value is 
path dependent  but must fall between the extremes 
indicated, representing shear followed by volume loss 
and volume loss followed by shear. Naturally, the true 
value of $ is expected to be intermediate between these 
extremes,  assuming simultaneous shear and volume loss. 

Of course, one may object to the use of cleavage as a 
principal direction indicator in the above circumstances, 
but the exercise serves as a simple illustration of the 
power of orthographic analysis in the factorization of 
deformation.  Complicated constructions for super- 
position of pure and simple shear will usually be more 
appropriate in practice but are left to the interested 
reader  to work out. 

RECONSTRUCTION OF THE THREE- 
DIMENSIONAL STRAIN ELLIPSOID 

A number of the exercises discussed above yielded the 
three-dimensional deformation ellipsoid or at least its 
irrotational component ,  the left stretch ellipsoid. How- 
ever, others are essentially two-dimensional and present 
the user with the problem of reconstructing the strain 
ellipsoid in three dimensions from sectional data (I will 
continue to use the casual term strain ellipsoid for what 
is strictly the left stretch ellipsoid). Ramsay (1967) and 
Milton (1980) have discussed algebraic solutions to this 
problem, using reciprocal quadratic tensors to represent 
strain ellipses and their parent strain ellipsoid. A major 
drawback of the tensor approach is that small errors in 
tensor components may cause large errors in the orien- 
tation of the calculated strain axes (Fig. 14). Here I 
adopt an alternative approach that does not employ such 
tensors. 

The problem of constructing an ellipsoid to fit three 
sectional ellipses must be tackled in three stages as 
errors may render sections incompatible. Only after 
closing such errors may one proceed to locate the axes of 
the strain ellipsoid and, finally, its axial ratios. 
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Fig. 14. Illustration of the potentially large effect upon principal 
directions when tensor components  change very little. Only one 
off-diagonal component  has been changed between the left and right 

hand tensors, yet their ellipses are very differently oriented. 

Exercise 11: To render three elliptical sections compatible 

Let the triclinic axes A - B - C  define three planes 
through a rock (orthogonal axes are perfectly acceptable 
but not necessary). 

(i) Using a single overlay of the orthonet  (Fig. 15a), 
draw lines OA, OB, OC, OA'  such that the angles 
/ A O B ,  Z B O C  and / C O A '  represent the interaxial 
angles of the three-dimensional reference frame. (Fold 
the paper until OA and OA'  are parallel as in Fig. 15(b) 
to check the three dimensional configuration of axes). 

(ii) In each sector AOB,  BOC and COA' ,  use t h e  
orthonet  to draw a portion of the calculated strain 
ellipse. Note that a pair of ellipses cuts each reference 
axis; therefore there are two ambiguous estimates of the 
stretch along each axis. Arbitrary choices of scale on the 
three section planes may be responsible for some of the 
ambiguity but it is usually impossible to form a closed 
loop of elliptical sections by adjustments of scale alone. 
It is as if the sections represented the boundaries of a 
spinnaker sail with rips at the axes (Fig. 15b). However ,  
scaling may be used to distribute the errors among the 
three axes and personal judgement may dictate at this 
stage whether greater confidence in one strain estimate 
than another  is appropriate. For simplicity, assume that 
the stretches along OA and OA'  are exactly the same 
and that all errors arose from the strain estimate in the 
BOC sector. Therefore  one need only adjust one ellipse 
to eliminate all ambiguity. The reader may repeat this 
procedure on all three sections if desired, closing half of 
the 'rip' on each axis through correction of each of the 
two juxtaposed ellipses. 

(iii) Draw an error bar on axes OB and OC as illus- 
trated in Fig. 16(a). Label the ends of the error bars BB' 
and CC', where B, C are the stretches as determined 
without error on the A OB  and COA planes and B' ,  C' 
are the corresponding erroneous estimates from the 
BOC plane. 

The problem is to adjust the ellipse in the BOC sector 
so that its perimeter passes through points B and C, not 
B'  and C'. Three adjustments are possible. Rotating the 

0 C' 

C 

(a) B c 'c  

(b) 
0 BE~ 

O 

(b) 

Fig. 15. General triclinic reference fram A - B - C .  (a) Plane divided into 
sectors representing the three reference planes in (b). 'Rip" at the 

reference axes implies incompatibility of strain data. See text. 

Fig. 16. Closing the errors on axes B and C. (a) Error bars BB'  and 
CC': Note that the calculated ellipse passes through B' and C' .  (b) 

Ellipse orientation corrected so that eqn. (5) holds. 
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net and tracing the ellipse with the same axial ratio but 
slightly different orientation will cause points B'  and C' 
to move in opposite directions along their respective 
axes. Choosing an ellipse of slightly different axial ratio 
but unchanged orientation will cause the points B'  and 
C' to migrate in the same direction, whether outwards or 
inwards. Changing the size but not the shape of the 
ellipse will also close the error bars simultaneously and 
since this adjustment does not usually reflect any change 
in the given data (axial ratios are usually given, not 
absolute stretches) it is preferable to adjust size rather 
than shape. Indeed, unnecessary drafting is avoided if 
one considers errors eliminated as soon as the pairs of 
stretch estimates OB, OB' and OC, OC' are in the same 
proportion (Fig. 16b). Therefore, the next step is: 

(iv) Adjust the orientation but not the axial ratio of 
the ellipse in sector BOC until it intersects the reference 
axes in points B' ,  C' such that 

OB/OB' = OC/OC'. (5) 

Now the three ellipse axial ratios and orientations are 
compatible. 

(v) Finally, the stretch of every radius of the corrected 
BOC sectional ellipse is brought into compatibility with 
the other two sections by a scaling of OB/OB'; no 'rip' 
remains in the 'spinnaker sail'. 

Exercise 12: To determine the principal directions from 
three compatible sectional ellipses 

This exercise is based on the Biot-Fresnel construc- 
tion. First it is necessary to determine the circular sec- 
tions of the strain ellipsoid. 

(i) Mark a geographical reference frame such as north- 
east-down on an overlay of the orthonet and trace three 
great circles to represent the planes AOB, BOC and 
COA from the previous example in their correct spatial 
attitude. 

(ii) Using data corrected in the case of the BOC plane, 
plot the calculated principal directions of the sectional 
ellipses. 

(iii) Mark points at 10 ° intervals along the three great 
circles and write beside each tickmark, the corre- 
sponding stretch (Fig. 17a). Step (v) of Exercise 11 must 
be carried out to render absolute stretches from the 
three planes compatible. 

(iv) Inspect the great circles of the net until two are 
found to intersect the three section planes in points of 
equal stretch value. These are the circular sections. The 
inspection procedure may take some time as great circles 
of all possible dips and all possible strikes must be 
considered. However, once one circular section is found, 
the second quickly follows. 

The principal directions are now constrained to lie 
along the intersection of the circular sections and along 
the bisectors of their dihedral angles (Fig. 17a). 

t 
(a) 

X '/'/ 

(b) 

Fig. 17. (a) Determination of the circular sections of the strain ellipsoid 
using the Biot-Fresnel construction. (b) Determination of three 
stretches where each principal plane cuts each section plane. See text. 

Exercise 13: To determine the principal stretch ratios 

Having obtained the principal directions from Exer- 
cise 12, it is a simple matter to determine the principle 
stretch ratios Rxy and Ry z. Simply note the stretches 
along the lines where the principal planes XY and YZ cut 
the section planes (Fig. 17b). For each principal plane 
there are three such stretches which may be analyzed 
using the technique previously described for stretched 
belemnites. 

INCORPORATION OF STRAIN DATA IN 
STRUCTURAL SECTIONS 

It is fashionable to draw cross sections through fold 
belts using principles of retrodeformability (see the 
review by Suppe 1985). Two assumptions commonly 
employed are (a) that the rocks underwent plane strain, 
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with no change of area in the section plane and (b) that 
bed lengths were conserved during folding. These may 
be acceptable rules for particular situations but are 
unacceptable in general; it is usually important to incor- 
porate all available strain data in the structural section. 
Apparently, it has not been realized that the stretched 
length of a hangingwall ramp and the deformed cut-off 
angle of hangingwall beds compared to their unde- 
formed footwall counterparts constitute strain markers 
as useful as belemnites or brachiopods. The problem is 
that all such strain readings are inevitably isolated; one 
must interpolate values between data points before 
undeforming the section. 

Exercise 14: To interpolate strain values between 
data points 

Figure 18(a) shows a section in which strain data are 
available at three neighbouring points A, B and C. We 
require an estimate of the strain state at an arbitrary 
intermediate point P. 

(i) First, trace the great circles representing the known 
strain ellipses at A, B and C and plot the pole to each 
(Fig. 16b: either upper or lower hemispheres may be 
used, but not a mixture). 

A 

(a) 

[3 

P 

(b) 

Fig. 18. (a) Three neighbouring strain data points A, B, C. The strain 
at P is to be interpolated. (b) Orthographic construction. Poles A, B, 
C represent corresponding strain ellipses. Great-circle arcs between 
pole P and A, B, C are in the same proportion as the corresponding 

distances PA, PB, PC on the outcrop. 

(ii) Next locate a pole Pwhich subtends angles PA, PB 
and PC on the net in proportion to the distances PA, PB 
and PC on the outcrop. 

(iii) Finally find the great circle of pole P and read its 
axial ratio and orientation. 

Note that only the axial ratio of the interpolated great 
circle is significant; all great circles have unit long axes, 
therefore absolute values are not interpretable. Also it is 
important to realise that the interpolation is non-linear. 
Principle directions and stretch ratios vary smoothly in 
all directions, but their rate of change is not constant. In 
practice, strain measurement errors are so large that 
there is little point in using a more mathematically 
refined approach; it is far more important that inter- 
polated values be weighted using personal judgement 
based on outcrop features. 

Exercise 15: To balance a section by undeforming 
bedlength 

The balancing of structural cross sections by conser- 
vation of bedlength may yield an acceptable restoration 
of competent units where outer-arc extension was 
roughly compensated by inner-arc shortening along the 
trace of each folded layer. In general, however, beds do 
not maintain constant length during folding and large 
errors may result from such simplistic assumptions. 
Given a dense set of interpolated strain data, we may 
determine the layer-parallel shortening at every point 
along a fold profile. 

(i) Trace a great circle to represent each principal 
stretch ratio along the arc of a folded layer. Draw a line 
on a second overlay to represent the trace of bedding. 

(ii) For each ellipse in turn, rotate the second overlay 
until the trace of bedding makes an angle with the ellipse 
axis corresponding to that extant on the section. 

(iii) Measure the layer-parallel radius of the ellipse as 
a fraction of the net's radius, multiply it by the maximum 
principal stretch to yield the actual layer-parallel stretch 
and by the arc-length over which the reading is presumed 
to reign. 

(iv) Add to the template of undeformed layers a line 
equal to the undeformed bed-length as calculated in step 
(iii) and repeat the process for the next arc of bedding. 

Exercise 16: To restore the initial area of  a section 

In the previous exercise we modified the bed-length 
balancing technique to accommodate layer-parallel 
strain data. There remains the problem of area change 
during deformation. Small-scale structures such as stylo- 
lites and veins abound in thrust belts and clearly 
demonstrate mobility of significant volumes of rock 
constituents. What is not clearly seen in a field examin- 
ation is the influence of non-plane strain upon the area of 
a section. The effect of veining can be removed simply by 
skipping vein material when estimating bed lengths and 
areas. However, if no attempt is made to account for 
material lost through pressure solution then it is prob- 
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( ~  

Fig. 19. Balancing a section by restoring its initial area. See text for 
details. 

the plane of section. Since the plane of section is known 
in the deformed state, its area stretch is the radius of the 
area stretch ellipsoid which parallels the pole to the 
section plane (Fig. 19a). The following procedure 
locates that radius vector in three dimensions (not to be 
confused with the two-dimensional construction of Part 
I, fig. 14 which yielded the area stretch of a plane given 
its initial pre-deformational pole), 

(i) Prepare an orthographic construction for the Az-Ay 
principal section of the area stretch ellipsoid and plot the 
pole to the section plane in its correct relative orientation 
(Fig. 19b). 

(ii) Measure the radius At of the area stretch ellipse in 
the direction of azimuth of the pole in the Az-Ay-A  x 
reference frame. 

(iii) Prepare a second area stretch construction using 
A t and Ax as axes (Fig. 19b) and find the area stretch 
vector whose inclination is the same as the inclination of 
the pole in Fig. 19(a). Measure the length of this vector 
as a fraction of the radius of the net and multiply by At to 
yield the area stretch vector along the section pole, Ap. 

(iv) Multiply the area stretch factor A v by the area 
over which the given strain reading is considered to reign 
and append the resultant area to the initial section 
template. 

Repetit ion of the above procedure for each strain 
locality on a section need not be laborious especially if 
the orientation net rotations and tensor calculations are 
programmed on a digital computer;  the reward is a 
section which is truly ret rodeformed,  not merely 
restored using assumptions of bed-length or area conser- 
vation that are appropriate only in limited cir- 
cumstances. 

CONCLUSION 

ably better  to include veins in the hope that they roughly 
balance stylolites. 

To estimate the effect of non-plane strain requires 
more work, but we neglect this factor at our peril. Most 
strain studies suggest that slaty cleavage forms in strain 
regimes for which Flinn's parameter  k is less than unity 
(Ramsay 1967). So everywhere we see the trace of 
cleavage in deformed sections we know that the section 
plane has lost area even if volume has been preserved in 
three dimensions. To restore such area loss the area 
stretch ellipsoid is employed as defined in Part I (De 
Paor 1983, p. 263). Remember  that the term area stretch 
is used to denote  the final area of an initial unit area, as 
opposed to area strain which refers to the change in an 
initial unit of area. The principal values of the area 
stretch ellipsoid are 

Ax = Y Z  
Ay = Z X  (De Paor 1983, eqn. 26) 
Az = XY. 

Given the principal area stretches at a particular point 
on a section, we wish now to calculate the area stretch for 

The orthographic method,  described in theory in Part 
I (De Paor 1983) and in practice in this paper, represents 
a unified approach to strain analysis. It is not necessary 
to commit to memory a vast array of strain techniques. 
Rather  it is sufficient to remember  the rule presented 
above, namely that there is a simple and direct relation- 
ship between the strain suffered by an object and the 
viewpoint from which it appears undeformed to an 
observer. The orthonet  serves to help the geologist 
decide what is an undeformed view by providing scales 
of degrees of pitch along great circles which correspond 
to true angular scales along the perimeter in the unde- 
formed state. Thus, using the orthonet  we may measure 
angles on the deformed objects as if they were in their 
initial pristine condition. Other  nets cannot be used in 
this fashion because they distort such angles. Only the 
orthonet  conserves vector and tensor operations, and 
homogeneous strain is one such operation. The net's 
main drawback is that it is of fixed size, but even this can 
be overcome with the aid of a microcomputer.  

The full power of orthographic analysis is realized 
when the net is used simultaneously in two different 
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capacities, both as an orientation net for the analysis of 
dips, strikes, pitches, plunges and trends, and as a strain 
net for the measurement of ellipse axial ratios. Such 
combined usage facilitates three-dimensional strain 
studies that have no obvious algebraic solution and 
highlights the errors associated with individual variables 
in a way that traditional strain studies fail to do. In this 
author's opinion,  the orthonet is potentially as useful in 
strain analysis as the stereonet is in structural analysis. 
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